2017年04月19日

超音波洗浄機の「流れとかたち・コンストラクタル法則」No.2

超音波洗浄機の「流れとかたち・コンストラクタル法則」




超音波システム研究所は、
 流れとかたちに関する「コンストラクタル法則」を利用した、
 超音波洗浄技術(No.2)を開発しました。





<参考>

1)振動について
ロイヤル・インスティテューション 133回「振動」より
機械工学の重要な一分野のほとんどすべてを、
ここに記述してみようと思っている
【著者】リチャード・ビジョップ 
【訳者】中山秀太郎  出版社:講談社(1981年 ブルーバックス B-471)
http://ultrasonic-labo.com/wp-content/uploads/d84ac354211817300e3ef1ba76e64a8d.pdf

2)流れとかたち
 すべてのかたちの進化は
 流れをよくするという「コンストラクタル法則(constractal-law)」が支配している!
【著者】 エイドリアン・ベジャン Adrian Bejan  J. ペダー・ゼイン J. Peder Zane
【訳者】 柴田裕之 【解説者】 木村繁男  出版社:紀伊國屋書店 (2013年)

3)サイバネティクスはいかにしてうまれたか
【著者】 ノーバート・ウィナー 
【訳者】 鎮目恭夫  出版社:みすず書房(1956年)


上記を参考・ヒントにして
 超音波伝播現象における
 「非線形効果」を測定・利用する技術を
 流れをよくするという「コンストラクタル法則(constractal-law)」で
 整理することで、超音波洗浄技術にまとめています。







流水式超音波洗浄技術

http://youtu.be/FdlLFBob30c

http://youtu.be/uIKFkNFkXxA

http://youtu.be/stCyYCsHX5k

http://youtu.be/oHwY0ey8ovI

http://youtu.be/TmlVKSbeXZg

http://youtu.be/J38Luu7HrqU

http://youtu.be/XG_O-J0hiP4

http://youtu.be/8bbQ722Llso

http://youtu.be/v-VKgEoLKHo

http://youtu.be/Vk9uEK-8vP0

http://youtu.be/oPlpQj3VxE8

http://youtu.be/tzdc8YPpegw

http://youtu.be/ybitZy0Rwy0

http://youtu.be/A4qeSQwwl8M

http://youtu.be/oOvzfTMmJio






最適化制御技術

http://youtu.be/DSGzc4pplBM

http://youtu.be/PNpBeMtQ1FI

http://youtu.be/JTGof5WaziM

http://youtu.be/CZ4cO0q_EDg

http://youtu.be/dO_NsB3xdUw

http://youtu.be/vmVfpCnrqt0

http://youtu.be/MxGq9lCJEJ4

http://youtu.be/1hOVckR00qg

http://youtu.be/pxOFhoPh4Bo

http://youtu.be/BVtA-KItY1Q

http://youtu.be/7VbgtEz3wLc






超音波洗浄機の「流れとかたち・コンストラクタル法則」
http://ultrasonic-labo.com/?p=1779










  


Posted by 超音波システム研究所 at 16:10Comments(0)超音波技術

2017年04月19日

積乱雲の発生・成長(ゲーテ地質学論集・気象篇)

積乱雲の発生・成長(ゲーテ地質学論集・気象篇)

上昇を促す熱と下降を促す重力に、
空の現象の多くが関係づけられないか。




ゲーテは言う
「自然の書物がどれほど多くを私に教えてくれるか...、
私の静かな歓喜はとても言いあらわされない」。

ゲーテ

「 
現象の背後に何も求めないがいい。

現象そのものが教示である。 」




不愉快を感ずることも

われわれは自分の役にたてねばならない。

それも生の一部分、

いや、大部分なのであるから。 」



「 人間は努力するかぎり迷うものである。 」



http://youtu.be/6p4vAcODwqM

ゲーテ自然学 を受け継いだ





イギリスの彫刻家ジョン・ウィクルスの
イマジネーションに富んだ自然学を紹介します 

フローフォーム

ウィルクスは、フローフォームの実証する種類の美的影響は

私達が水に対する意識と良心を再び目覚めさせるのに、

切実な重要性を持っていると信じている。

新たな方法で、フローフォームは私達の周囲にある生命力としての水に関心を集めることが出来るのだ。
美的アピールに加えて、フローフォームは生態学的応用の可能性も秘めている。

超音波システム研究所
ホームページ  http://ultrasonic-labo.com/


音色と超音波   http://ultrasonic-labo.com/?p=1082







  


Posted by 超音波システム研究所 at 09:16Comments(0)ブログ

2017年04月19日

超音波の測定・解析に基づいた洗浄システム

超音波洗浄システムを最適化する方法
(超音波水槽と液循環の最適化技術を応用)

<<超音波の測定・解析に基づいた洗浄システムを開発>>

超音波システム研究所は、
 超音波の測定・解析に基づいて、
 洗浄物、超音波水槽、液循環、・・による影響を考慮した
 超音波洗浄システムを開発・改善する技術を開発しました。




この技術は、
 複雑な超音波振動のダイナミック特性を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注)・・により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。




注:具体的な条件に合わせた多数のノウハウがあります
 例:液循環の場合
  水槽と循環液と空気の
  境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない水槽でも対応可能です。

 例:水槽の場合
  超音波振動子に合わせた、設置方法により
  キャビテーション・定在波の
  伝搬周波数・音圧レベルの状態を調整します





具体的な対応手順

 1)現状の超音波照射状態を測定・解析する

 2)目的(洗浄物、数量、汚れ・・)を確認する

 3)これまでの状況を確認して
   超音波洗浄システムとしての総合評価を行う

 4)総合評価に基づいた
   問題点・改善点・・・の分析を行い
   効率的な改善方法を検討・整理・提案する

 5)改善の実施

   優先順位に合わせた、簡単な改善による変化の確認
   (超音波照射状態の測定解析 効果の確認)

   日常の超音波管理データの解析・評価に基づいた
   優先順位の低い大きな改善の実施タイミングを検討する
   (超音波照射状態の測定解析 効果の推定)

 6)超音波洗浄状態の管理方法を検討・整理・提案する

 7)継続的な改善につなげる
    測定・解析方法を検討・整理・提案する

 8)改善効果の測定・分析・・・

 上記のように
 継続的な超音波の管理により
 個別の洗浄物・洗浄数・・に合わせた
 洗浄に最も効果的な超音波の状態を正確に把握することができます







 
超音波テスターを利用した計測・解析により
 各種の関係性・応答特性(注)を検討することで
 超音波の各種相互作用の検出により実現しています。

注:パワー寄与率、インパルス応答・・・

 超音波の測定・解析に関して
 サンプリング時間・・・の設定は
 オリジナルのシミュレーション技術を利用しています


なお、今回の技術を
 超音波洗浄、表面改質、化学反応実験・・・の改善技術として
 最適化のコンサルティング提案・実施対応を行っています。




<コメント>
最適化とは、分析とテスト・確認を通して、
 洗浄システムを改善することであり、
 一度行えば終わりという作業ではありません。
計測・解析・改善・評価・最適化、そして再び計測というサイクルを
 何度も繰り返すことで、より良い改善に向かいます。
・・・・・・
重要なことは、
 常にパフォーマンスの改善を続けていくというプロセスを、
 「どのようにして導入していくのか(注)」ということです。

注:オリジナル製品:超音波テスターによる
  音圧測定・解析による日常管理により実現できます







参考

通信の数学的理論
  http://ultrasonic-labo.com/?p=1350

音色と超音波
  http://ultrasonic-labo.com/?p=1082

モノイドの圏
  http://ultrasonic-labo.com/?p=1311

物の動きを読む
  http://ultrasonic-labo.com/?p=1074

超音波計測の特別システムをオーダーメイド対応
 http://ultrasonic-labo.com/?p=1972
 http://ultrasonic-labo.com/?p=1962
 http://ultrasonic-labo.com/?p=1953
 http://ultrasonic-labo.com/?p=1915





超音波機器の<計測・解析・評価>(出張)サービス
 http://ultrasonic-labo.com/?p=1934

超音波<計測・解析>事例
 http://ultrasonic-labo.com/?p=1705

超音波プローブによる<メガヘルツの超音波発振制御>技術
 http://ultrasonic-labo.com/?p=1811

超音波の解析動画を公開
 http://ultrasonic-labo.com/?p=1337

音圧測定装置(超音波テスター)の特別タイプを製造販売
 http://ultrasonic-labo.com/?p=1736








解析技術

1)多変量自己解析モデルによるフィードバック解析により

 超音波の安定性・変化について検討・評価を行います




2)インパルス応答特性の解析により

 各種の設定・治工具・・に関する検討・評価を行います



3)パワー寄与率の解析により

 超音波(周波数・出力)、水槽、液循環・・

 の最適化に関する検討・評価を行います




4)その他(表面弾性波の伝搬)の解析により

 対象物と目的に合わせた、洗浄・攪拌・分散・改質・・・

 の検討・評価を行います



 この解析方法は、

 複雑な超音波振動のダイナミック特性を

 時系列データの解析手法により、

 超音波の測定データに適応させることで実現しています。
 具体的な超音波伝播周波数の状態により、

 解析の有効性を考慮する必要があるため

 すべてに適応する設定はありません。

 (事前のシミュレーション検討・確認を行っています
  具体的な装置に合わせた
   測定・解析方法を提案します)

超音波技術1
  http://ultrasonic-labo.com/technology







  


Posted by 超音波システム研究所 at 09:14Comments(0)超音波技術

2017年04月19日

動きの文化の壁を科学で超える

動きの文化の壁を科学で超える





テーマ:目が開く

西欧ではノコギリを押して使い、
日本では引いて使うという、
一見単純な思い付きが持つ
深い意味に圧倒されながら
このブログを書いています。

これまでゴルフについて書いて来ましたが、
その内容はゴルファーには歓迎されていない
という感じが強まるばかりでした。

その原因が
西欧と日本を隔てる
動きの文化の相違にある
ことが明白になって来たのです。

この事を科学的に説明するのは、
力を出す動きを作る時の背骨の使い方です。

ノコギリを使って丸太を切る動きで
具体的にその違いを明らかにしてみましょう。

地面に横たわる大きな丸太を
日本型の手前に引くノコギリで切る場合には、
一旦腕の動きで切り込みを作り、
木の抵抗が大きくなると両足の足場を固め、
両脚を踏ん張って両腕を引っ張ります。

この動きに応じて背骨が固まり、
脚と腕の動きを繋ぐ固定軸として働きます。

これに対して、
重いノコギリを押して地面の丸太を切る時には、
先ず背骨で体重を腕に掛けて押し、
同時にこの動きを受けて
脚が踏ん張り腕を前に押します。

腕や脚は背骨の動きに導かれ、
目的とする強い力を発揮します。

背骨が主なエンジンで、
脚や腕の筋群は背骨の動きに応じて力を発揮します。

ブログ(ゴルフ直線打法)
 http://ameblo.jp/linear/entry-10011188630.html より












イメージによる超音波への展開
 
背骨:振動子の固有振動モード
背骨の動き:振動子の設置方法

脚や腕の筋群:超音波発振周波数、出力
脚の踏ん張り:定在波、キャビテーション

腕の動き:音響流、超音波伝搬、液循環、水槽・・

引く動き:減衰・干渉・・・超音波の効果の消滅









代数モデルによる整理

基本的な超音波照射による現象全体をRing(環の圏)として、
キャビテーションによる現象をアーベル群の圏
加速度による現象をMonoid(0元をもつ乗法の一元体)
とするモデル

アーベル群:加法に関する演算をキャビテーション現象に対応させます

Monoid:乗法に関する演算を加速度現象に対応させます。

導来関手:定在波の特徴を、「導来関手」に対応させます。

 このようにして構成したモデルに基づいて
 超音波の伝搬状態に関するダイナミック制御を
 「スペクトルシーケンス」として表現(適応)させます。

 なお、超音波システム研究所の「定在波の制御技術」は、
 この方法による、具体的な技術として応用しています。

<<超音波の代数モデル:応用事例>>

キャビテーションと加速度の効果に関する新しい分類

超音波システム研究所は、
 超音波の伝搬状態を解析することで、
 キャビテーションと加速

度の効果に関する
 新しい分類方法を開発しました。

超音波の解析動画を公開
  http://ultrasonic-labo.com/?p=1337

超音波<計測・解析>事例
  http://ultrasonic-labo.com/?p=1703

超音波システム研究所
ホームページ  http://ultrasonic-labo.com/








数学的理論
  http://ultrasonic-labo.com/?p=1350

音色と超音波
  http://ultrasonic-labo.com/?p=1082

モノイドの圏
  http://ultrasonic-labo.com/?p=1311

物の動きを読む
  http://ultrasonic-labo.com/?p=1074

  


Posted by 超音波システム研究所 at 08:15Comments(0)ブログ

2017年04月19日

小型ポンプを利用した「流水式超音波(音響流制御)システム」

(超音波テスターによる<測定・解析・制御>の応用技術)

超音波システム研究所(所在地:東京都八王子市)は、
 小型ポンプによる液循環により
 超音波(音響流)の伝搬状態をダイナミックに制御する
 「流水式超音波(音響流制御)システム」を開発しました。




超音波テスターによる
 流れの変化と超音波の変化を
 水槽・液体(マイクロバブル)・超音波振動子・・・
 の相互作用を含めた音圧解析により
 目的に合わせた
 音響流の変化を利用可能にするシステム技術です。

実用的には、
 現状の液循環装置の
 ON/OFF制御(あるいは流量・流速・・・の制御)を
 装置の設置状態を含めた、構造・強度による
 低周波の振動モードを最適化する方法です。

より発展的には
 「流水式超音波システム」として
 メガヘルツまでの周波数変化を含めた「超音波シャワー」や
 低出力の超音波による10mサイズの水槽への超音波刺激・・・
 様々な応用が可能です。





-今回開発したシステムの応用実施事例-

ガラス・レンズ部品の精密洗浄(超音波シャワー技術)

複雑な形状・線材・真空部品・・・の表面改質(共振現象の制御技術)

溶剤・洗剤・・・・の化学反応(超音波と流れによる攪拌)

ナノレベルの粉末・塗料・触媒・・・攪拌・分散(表面弾性波の制御技術)

・・・・・・・

上記の技術は、音圧(非線形現象)測定・解析に基づいた、
 有限な場合の、表面弾性波と流体の流れに関して
 経験データからの解釈・応用としての新しい方法です。

興味のある方は、メールでお問い合わせください




■参考動画

音圧測定1

https://youtu.be/2TsYRRDGrCo

https://youtu.be/VVKPQ3WsUGQ

https://youtu.be/wayE88Y0Nq4

https://youtu.be/Aauwa-dbcgQ

https://youtu.be/6lSUydmkmRo

https://youtu.be/GD2gR7m1aHs




音圧解析1

https://youtu.be/iEZ0M5xT2oc

https://youtu.be/pQNXf2T-QLA

https://youtu.be/VAPeUOq9_i0





音圧測定2

https://youtu.be/Evc8BgZ1E-Y

https://youtu.be/QrExNA2eH5w

https://youtu.be/R2nHh72wqeg

https://youtu.be/N_iG3BihbQo

https://youtu.be/mO9_RsZFrH4

https://youtu.be/1ewWwVMF0No

音圧解析2

https://youtu.be/KORoH1VdPN0

https://youtu.be/6NrZvfXl9rA

https://youtu.be/cECn9kSHj_4





音圧測定3

https://youtu.be/kr88YYKaBmg

https://youtu.be/t7XWf3Yqwvw

https://youtu.be/mAhz4au4rrU

https://youtu.be/uzeFdVDokBo

https://youtu.be/NRxyPRr7wlQ





音圧測定4

https://youtu.be/jQMXmRancoE

https://youtu.be/Il1fJE2fZ0U

https://youtu.be/CZgLmIQ9kek

https://youtu.be/EIeQ6D6Yjvk

https://youtu.be/Lxg27VZcnI0

https://youtu.be/N9UbgW_dN70

https://youtu.be/CXPQXkqjuvE

https://youtu.be/zvh2fxaAyQE

https://youtu.be/cfuaVKBBt8Q





その他

https://youtu.be/yZDY_lqEr_Y

https://youtu.be/KHpIey_7wsI

https://youtu.be/B5L1Ud5qYSA

https://youtu.be/bX2c8x6fgjk

https://youtu.be/Ev5_kGbeSA4

https://youtu.be/rOTSBfE07VQ

https://youtu.be/7ys4AsC8AKg

http://youtu.be/xg3RmJXk6rs

http://youtu.be/7qj9_-ls3c8

http://youtu.be/0QnD6TOvlP8

http://youtu.be/yjRFd9jgl8I

http://youtu.be/sDenxLnxX0M

http://youtu.be/RHlmktAnydo

https://youtu.be/XSzcQKTj0CQ

https://youtu.be/YLPWuZRrEOQ

https://youtu.be/RJV0ohiNZ5Y

https://youtu.be/9emrl9BmAM4

https://youtu.be/OUMBL4Fh3c0

https://youtu.be/YWrWJKmw7gA

https://youtu.be/a8lRZRCpjb4

https://youtu.be/hGJeb96ynio




「流水式超音波システム」は
 中性洗剤、アルコール・・・に対しても利用可能です。

現在利用している超音波洗浄液・・・に対しても
 場合によっては利用することができます。

「流水式超音波システム」による効果は
 効率的な超音波照射を実現するとともに
 マイクロバブル・ナノバブルの発生を促進します。

さらに、一定時間の超音波照射により
 ナノバブルの量がマイクロバブルの量より多くなます。

その結果、
非常に安定した超音波(音響流)制御を行うことができます。
(超音波伝搬状態の計測・解析により確認しています)



「流水式超音波システム」
http://ultrasonic-labo.com/?p=1258

小型ポンプによる「音響流の制御技術」
http://ultrasonic-labo.com/?p=7500

超音波の組み合わせ制御技術
http://ultrasonic-labo.com/?p=7277

小型超音波振動子による「超音波伝播制御」技術
http://ultrasonic-labo.com/?p=1602

超音波を利用した、「ナノテクノロジー」の研究・開発装置
http://ultrasonic-labo.com/?p=2195

3種類の異なる周波数の「超音波振動子」を利用する技術
http://ultrasonic-labo.com/?p=3815

ジャグリング定理を応用した「超音波制御」
http://ultrasonic-labo.com/?p=1753

新しい超音波(測定・解析・制御)技術
http://ultrasonic-labo.com/?p=1454

超音波による「金属部品のエッジ処理」技術
http://ultrasonic-labo.com/?p=2894

超音波の洗浄・攪拌・加工に関する「論理モデル」
http://ultrasonic-labo.com/?p=3963


洗浄システム(推奨)
http://ultrasonic-labo.com/wp-content/uploads/52cc97c1a13fd294f53af526edd69990.pdf

超音波洗浄資料(抜粋)
http://ultrasonic-labo.com/wp-content/uploads/4b10b044100130815368b1dc57220eda.pdf











  


Posted by 超音波システム研究所 at 08:03Comments(0)超音波技術

2017年04月19日

<脱気・マイクロバブル発生液循環システム> No.3

超音波システム研究所は、
 目的に合わせた効果的な超音波制御を実現するために、
 <脱気・マイクロバブル発生液循環システム>を利用しています。



超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置は
  1:専用部材を使用
  2:固有振動と超音波周波数・出力の最適化を行っています
3)超音波振動子は専用部材を利用して設置しています
  (専用部材により、定在波、キャビテーション、音響流の
   利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
   (標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
 超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)








目的の超音波状態確認は音圧測定解析(超音波テスター)で行います


ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します

液循環により、以下の自動対応が実現しています

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
 液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
 同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません

この濃度分布の解決がマイクロバブルの効果です

脱気・マイクロバブル発生液循環が有効な理由です



以下の動画は
マイクロバブル発生液循環装置による
超音波のダイナミック制御を実現させています






<<参考動画>>

https://youtu.be/9GRrsjI3DEg

https://youtu.be/Vfv8Uerfp0c

https://youtu.be/quilYB42Jqg

https://youtu.be/vCeBsF_9uBs

https://youtu.be/XhzwZQdyK8E

https://youtu.be/FE7DPDkMOyQ








https://youtu.be/5od5p9RiyBI

https://youtu.be/pL9Hdgyc_LU

https://youtu.be/O29DJ9JIGO8

https://youtu.be/ht-QutAKMBw

https://youtu.be/B87Dl67l49s

https://youtu.be/75-8aLqtr3w

https://youtu.be/5of576CFU98

https://youtu.be/Eds0tOFFaLI

https://youtu.be/KtYAs49rwkQ

https://youtu.be/bQgUoQfQdsU

https://youtu.be/YYfNRD5d-cM

https://youtu.be/IW5A72TrMm4

https://youtu.be/BCQxXgJuX8I

https://youtu.be/dVqwVgvG79k

https://youtu.be/aRexmxACz2U

https://youtu.be/2iM2o34p1rM

https://youtu.be/ICNLzBjq80s

https://youtu.be/hHQc2xYlSlU

https://youtu.be/N-_YxaT11SM




上記の技術により
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・によりトレードオフの関係が発生する場合があり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
 洗剤の使用や撹拌・・では、
 通常の洗浄とは反対の対応事例が多い傾向にあります)








オリジナル技術(液循環)
http://ultrasonic-labo.com/?p=7658

<超音波のダイナミックシステム:液循環制御技術>
http://ultrasonic-labo.com/?p=7425

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

現状の超音波装置を改善する方法
http://ultrasonic-labo.com/?p=1323

超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753

超音波専用水槽の設計・製造技術
http://ultrasonic-labo.com/?p=1439

超音波とマイクロバブルによる
表面改質(応力緩和)技術
http://ultrasonic-labo.com/?p=5413



  


Posted by 超音波システム研究所 at 08:02Comments(0)超音波技術

2017年04月19日

複数の異なる「超音波振動子」を同時照射する基礎技術

「超音波振動子」を同時照射する技術

超音波システム研究所は、
複数の異なる周波数の「超音波振動子」を利用する基礎技術を開発しました。





今回開発した技術は
 定在波の制御により、キャビテーションと加速度の効果を
 具体的な伝搬周波数のスペクトルとして変化させるという技術です。

 周波数28+72kHz、出力200Wの超音波照射で、
 1ミクロンの分散効果を実現させることも
 周波数28+40kHz、出力280Wの超音波照射で、
 ダメージを発生させずに洗浄することも可能です。

 オリジナルの超音波伝搬状態の測定・解析技術により、
 振動子の組み合わせによる
 目的に合わせた(洗浄、加工、撹拌・・)
 制御状態が実現することを確認しています。







■参考動画

 https://youtu.be/5S0pp71Fe7k

 https://youtu.be/HaCh-M2N5zY

 https://youtu.be/fJ2z0TD1Hjs

 https://youtu.be/vpgMGlMDuJY

 http://youtu.be/-dsDSgpNMQw

 http://youtu.be/7X92BI1Pius

 http://youtu.be/hLRtoKpEE1E

 http://youtu.be/lgZrC6kvoCc





 https://youtu.be/ymNmcS1KozM

 https://youtu.be/XP0_o8vaJm8

 https://youtu.be/7J4dELjsrAw

 https://youtu.be/pKFa2f3mmH4

 https://youtu.be/DLEyx9eJUXQ




これは、新しい超音波技術であり、
 超音波のダイナミック特性による一般的な効果を含め
 新素材の開発、攪拌、分散、洗浄、化学反応実験・・・
 に大きな特徴的な固有の操作技術として、
  コンサルティングにおいて利用・発展対応しています。


 原理の論理的な説明と
  具体的な方法(技術)について
  コンサルティング対応させていただきます。







超音波発振・計測・解析システム(超音波テスター)
http://ultrasonic-labo.com/?p=7662

表面弾性波の利用技術
http://ultrasonic-labo.com/?p=7665

通信の数学的理論
http://ultrasonic-labo.com/?p=1350








音色と超音波
http://ultrasonic-labo.com/?p=1082

モノイドの圏
http://ultrasonic-labo.com/?p=1311

物の動きを読む
http://ultrasonic-labo.com/?p=1074


 




  


Posted by 超音波システム研究所 at 06:35Comments(0)超音波技術

2017年04月19日

超音波を利用した、「ナノテクノロジー」の研究・開発装置

超音波を利用した、「ナノテクノロジー」の研究・開発装置





超音波システム研究所は、
 これまでに開発した
 「超音波による攪拌・分散・乳化・破砕・・」の技術を応用して
 効率良く「ナノテクノロジー」研究・開発に利用できる
 超音波システムを開発・対応します。

このシステムは
 以下の装置と技術の組み合わせにより実現します。

<<装置>>
洗浄システム(推奨)
http://ultrasonic-labo.com/wp-content/uploads/52cc97c1a13fd294f53af526edd69990.pdf


<<技術>>
 *複数の異なる周波数の振動子の「同時照射」技術
 *間接容器の利用に関する「弾性波動」の応用技術
 *振動子の固定方法による「定在波の制御」技術
 *時系列データのフィードバック解析による「超音波測定・解析」技術
 *液循環に関する「ダイナミックシステム」の統計処理技術
 *超音波の「非線形現象に関する」制御技術
 *超音波とマイクロバブルによる「表面改質技術」
 *超音波の「音圧測定・解析技術」
 *揺動ユニットによる
 超音波(キャビテーション・加速度・音響流)制御技術
 *オリジナル超音波システムの開発技術
 *超音波プローブの「発振・制御」技術
 *超音波を利用した「表面弾性波の計測技術」
 *・・・・・

上記を、目的(サイズ、価格、性能・・・)に合わせた、
 オリジナルシステムとして提案・提供します。

このシステムによる具体的な応用事例

1)カーボンナノチューブ、銀粉、鉄粉、銅粉、
 アルミニウム粉、・・・
 のナノレベルの分散
 
2)各種ポリマーの水溶媒・・・への溶解・乳化

3)高調波による化学反応の促進

4)各種粉末への表面処理
 (超音波特有の新しい表面処理効果を実現しました。)

5)機械加工・研磨・表面処理・・・への利用
 (鋼材・・・への超音波(高調波)伝搬)

特に、
 超音波の発振周波数に対して、
 対象物への伝搬周波数(キャビテーションと音響流の効果)を
 明確に制御することで、安定した超音波の効果を実現します。

非常に単純な事項が多いのですが
 個別の音響特性に対する対処・設定・・が異なるため
 具体的な事項は
 ノウハウとしてコンサルティング対応します。

現状の超音波装置を利用する場合は
 発振の順序・方法、出力変化の方法、
 水槽内の液面の振動・・に関する
 各種(時間の経過による特性の変化・・)の
 特性・特徴を測定確認する必要があります。
 特に、水槽・液体・装置・治工具・・設置方法・・・に関する
 <相互作用の影響>を数値・グラフ化により、
 全体的に、超音波の状態を把握することが重要です。

その結果
 40kHzの超音波振動子を使用した
 100kHz-3MHzの超音波(高調波)による
 非線形性(キャビテーションや音響流)の効果を利用できます。
 この、高い周波数と高い音圧レベルの実現により
 ナノレベルの研究開発への利用が、可能となります。

これは、超音波に対する新しい視点です、
 これまでの実施結果・・から
 対象物と超音波振動子の周波数の関係よりも
 システム全体として
 各種の超音波振動による相互作用の影響が
 大変大きいことを確認しています。
 超音波の伝搬状態を有効に利用するためには
 相互作用による伝搬周波数の状態を検出して
 最適化(制御)することが必要です。








コンサルティングを含め推奨システムとしては、
 2種類の超音波振動子の同時照射を
 目的に合わせて制御・利用する方法が
 (超音波の利用範囲、制御の簡易性・・から)
 最も効率的だと考えています。


この技術・装置(システム)は
 間接容器の利用を行うため、
 具体的な対象物の構造・材質に合わせた、
 様々な、洗剤・溶剤・・・各種媒体に対して、
 化学反応・・・による現象を含めた利用が、可能です。

必要な場合は
 空中超音波、あるいは
 超音波素子による直接伝播・・・
 簡易実験装置といったことにも対応します。
 (このようなタイプによる実績はあります)


これまでは、対象物・・の音響特性と超音波の効果は、
 トレードオフの関係にあることが多かったのですが
 様々な相互作用の組み合わせ技術により
 装置全体に対する
 各種の音響特性を目的に合わせて
 最適化することが可能になりました。
 大変効率的で応用範囲の広い、研究開発システムです。

オリジナルの超音波伝搬状態の測定・解析技術により、
 実績を含め、ナレベルの効果を確認しています。

原理の論理的な説明と
 具体的な方法(技術)について
 コンサルティング対応します。






***********************
超音波システム研究所
ホームページ  http://ultrasonic-labo.com/
***********************

超音波を利用した、「ナノテクノロジー」の研究・開発装置
http://ultrasonic-labo.com/?p=2195







  


Posted by 超音波システム研究所 at 04:11Comments(0)超音波技術

2017年04月19日

超音波洗浄機を改良する方法

超音波洗浄機を改良する方法

(超音波の測定・解析に基づいた超音波洗浄システムを開発)






超音波システム研究所は、
 洗浄対象物の音響特性に合わせた
 超音波洗浄技術を開発しました。

この技術は、
 対象物の特性により、
 表面に伝搬する複雑な超音波の伝搬状態を
 洗浄効果に合わせて
 コントロールする技術です。

特に、
 対象物の音響特性により
 ダメージの発生しやすい材質や構造に対する 
 キャビテーションのダイナミック特性を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注)や
 専用の治工具・・・により、
 超音波による音響流の効果を
 目的に合わせて設定する技術です。

注:水槽と循環液と空気の
  境界条件に関する、関係性の設定がノウハウです。
  オーバーフロー構造になっていない水槽でも対応可能です。

具体的な対応事例として
 現状の水槽による、超音波を減衰させる問題点を
 液循環ポンプの設定により
 騒音を発生させずに対策するということができます。

 アルミ部材・・・に対する
 ダメージを発生させない
 効果的な音響流の設定が可能です。

 脱気・・・により
 超音波の効率が改善されたことで発生する
 水槽や振動子の構造による問題を
 液循環と治工具により改善が可能です。







 
超音波テスターを利用した計測・解析により
 各種の関係性・応答特性(注)を検討することで
 超音波の各種相互作用の解析・検出により実現しました。

注:パワースペクトル、自己相関、パワー寄与率、インパルス応答・・・


 超音波の測定・解析に関して
 測定条件(サンプリング時間・・・)の設定は
 オリジナルのシミュレーション技術を利用しています


なお、今回の技術は
 超音波システムの改良技術として
 コンサルティング対応しています。


超音波水槽の構造・大きさと
 超音波(周波数、出力、台数・・)に合わせた
 <超音波>と<水槽>と<液循環>のバランスによる
 超音波の最適な出力状態を測定・解析データとともに
 提案・改良・報告させていただきます


本来は、水槽の新規製作、新規設置、新規超音波の固定、・・・
 が最もよいのですが、
 現実的には、現状の改良として
 液循環ポンプの追加改良で実現させることが
 これまでの事例から
 費用と効果の最適化になると判断して
 提案しています。

必要性と要望により
 新規設計・開発にも対応します。














参考動画
(参考となる動画です
 具体的な方法はコンサルティングで説明します)

 http://youtu.be/V-UflXl3gXg

 http://youtu.be/gCwzdYApLuE

 http://youtu.be/6kM6ErIGbwI

 http://youtu.be/ifwTQZId_S8



  


Posted by 超音波システム研究所 at 03:16Comments(0)超音波技術

2017年04月19日

超音波(キャビテーション・音響流)の効果に関する新しい分類

超音波システム研究所は、
 超音波の伝搬状態を解析することで、
 キャビテーションと加速度の効果に関する
 分類方法を非線形現象に適合させる方法を開発しました。








今回開発した分類に関する方法は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 キャビテーションと加速度の効果を推定します。

これまでのデータ解析から
 効果的な利用方法を
 以下のような
 4つのタイプに分類することができました。

 1:キャビテーション主体型
 2:音響流主体型
 3:ミックス型
 4:変動型

 上記の各タイプについて
  安定性・変化の状態・・・に関して
  詳細な分類により、
  目的と効果に対する、効率のよい
各種条件の設定・調整が可能になりました。

 特に、洗浄に関しては
  汚れの特性やバラツキに関する情報が得られにくいため
  このような分類をベースに実験確認することで
  効果的な超音波制御が、実現します。





 この分類の本質的なアイデアは、
 超音波による定在波の特徴を、抽象代数学の
 「導来関手」に適応させるということです。

 抽象的ですが
 超音波の伝搬状態を計測解析するなかで
 定在波に関する的確な対応・制御事例から
 時間経過とともに変化する状態を捉えるために
 「導来関手」とスペクトルシーケンスの関係を
 キャビテーションの強さをパラメーターにした
 複体の変化により分類することにしました。
 

 なお、超音波システム研究所の「非線形制御技術」は、
 この方法による、
 具体的な技術(超音波制御BOX)として対応しています。

応用技術として
 非線形性の発生状態に関する研究開発を進めています。
 「超音波利用の最も大きな効果が、非線形状態の変化にある」
  という考え方が一歩進んだと考えています。




参考

<<音圧測定>>

http://youtu.be/-htxNTYAUNc

http://youtu.be/WP71iGrXI70

http://youtu.be/fBSbY30ni_g

http://youtu.be/R0PStLXUkFQ

http://youtu.be/Y7h-K80jk8I

http://youtu.be/VZy-ep5dQQ0

http://youtu.be/z5OCAh9aUlY

http://youtu.be/Ou5Gj6BZCUo

http://youtu.be/IhZsaxi0vx4

http://youtu.be/FvNHU74Vu5c






<<音圧解析>>

http://youtu.be/ttJHlDmliz0

http://youtu.be/8Se08bG1JjY

http://youtu.be/YgrrAsI8RxE

http://youtu.be/-jCm1hHNSr0

http://youtu.be/p5LYCDd-2SI

http://youtu.be/T96LI_Ur_s4

http://youtu.be/G2U-WJ5sQ04

http://youtu.be/Ig_KW1Fnnfs








<<解析結果>>

http://youtu.be/PXOF-ZWPSqE

http://youtu.be/uKtQLo-exhQ

http://youtu.be/mXjHCxIwNFw

http://youtu.be/Zhxn5CW4CVY

http://youtu.be/ERzYWp5O98s

http://youtu.be/urvFXcNd_ps

http://youtu.be/ynwx7qfjr7w

http://youtu.be/stKKZhGTZSU

http://youtu.be/pmXTun-MyiQ

http://youtu.be/BhXAq8Ic8VA

http://youtu.be/JsuvPqLm6Wo


なお、今回の技術をコンサルティング事業として、
展開することを計画しています。

参考

超音波の代数モデルによる制御技術
http://ultrasonic-labo.com/?p=1311





  


Posted by 超音波システム研究所 at 02:18Comments(0)超音波技術